Cambridge International Examinations Cambridge International General Certificate of Secondary Education | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | **PHYSICAL SCIENCE** 0652/31 Paper 3 (Extended) October/November 2014 1 hour 15 minutes Candidates answer on the Question Paper. No Additional Materials are required. ## **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. A copy of the Periodic Table is printed on page 20. Electronic calculators may be used. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. This document consists of 19 printed pages and 1 blank page. ## **BLANK PAGE** 1 Methane burns according to the following equation. $$\mathrm{CH_4} \, + \, \mathrm{2O_2} \, \rightarrow \, \mathrm{CO_2} \, + \mathrm{2H_2O}$$ | (a) | (i) | This reaction releases energy. | |-----|------|---| | | | State the term used to describe a chemical reaction that releases energy. | | | | [1] | | | (ii) | Use ideas about bond breaking and bond making to explain why energy is released in this reaction. | | | | | | | | | | | | | | | | [3] | | (b) | (i) | Name the fossil fuel that consists mainly of methane. | | | | [1] | | | (ii) | The main use of methane is as a fuel. | | | | Suggest why methane has only a few other uses. | | | | | | | | | **2** A student needs to find the density of an irregular object **P**. To find the mass of **P**, he suspends a spring and a metre ruler from a stand and clamp. He hangs the object **P** from the spring as shown in Fig. 2.1. Fig. 2.1 He records the length of the spring with **P** hanging on it. He removes **P**. He records the length of the spring with different weights added to it. He uses these results to plot the graph in Fig. 2.2. Fig. 2.2 The length of the spring with the body **P** hanging on it is 16.0 cm. | (a) | (i) | Determine the weight of body P . | |-----|------|---| | | | weight = N [1] | | | (ii) | Calculate the mass of P and state the unit. | | | | | | | | mass = unit = [2] | | (b) | In o | rder to calculate the density of P , the student needs to find its volume. | | | Des | scribe how this can be found. | | | | | | | | | | | | | | | | [3] | | (c) | | volume of P is found to be 180 cm ³ . | | (0) | | | | | Cal | culate the density of P in g/cm ³ . | $density = \dots g/cm^3 \dots [2]$ 3 Crude oil contains hydrocarbons of different chain lengths. These hydrocarbons are separated into useful fractions. The bar chart in Fig. 3.1 shows how much of each fraction can be distilled from 100 tonnes of crude oil. It also shows the demand for each fraction we need from 100 tonnes of crude oil. Fig. 3.1 | (a) | fractions from crude oil. | ЮІ | |-----|---------------------------|-----| | | | | | | | [1] | | (b) | The | problem shown by the bar chart is solved by the use of cracking. | |-----|------|--| | | (i) | Explain what is meant by <i>cracking</i> . | | | | | | | | | | | | [3] | | | (ii) | Explain how cracking solves the problem you stated in part (a). | | | | | | | | [2] | | (c) | Cra | cking can be used to make ethene. | | | Eth | ene belongs to the homologous series of alkenes. | | | (i) | Explain what is meant by the term <i>homologous series</i> . | | | | | | | | [2] | | | (ii) | State why ethene is classified as an alkene. | | | | [1] | 4 A teacher demonstrates the properties of waves using a ripple tank. A barrier with a small gap is placed in the ripple tank. Fig. 4.1 shows a view of the ripple tank from above. Fig. 4.1 The vibrator produces a series of waves of constant frequency. The waves move towards the barrier. | (a) | Exp | plain what is meant by the term <i>frequency</i> . | | |-----|-------|--|------| | | | | | | (b) | (i) | Draw, on Fig. 4.1, three wavefronts after they pass through the gap. | [3] | | | (ii) | Name the property of waves shown by the movement of these wavefronts just after have passed through the gap. | they | | | | | [1] | | (c) | The | e barrier is replaced by a similar barrier with a much wider gap. | | | | | mpare the waves after they have passed through the original gap with the waves that has sed through the wider gap. Describe one similarity and one difference. | nave | | | sim | nilarity | | | | | | | | | diffe | erence | | | | | | [2] | Question 5 begins over the page 5 Table 5.1 shows information about elements in Group III of the Periodic Table. Table 5.1 | element | symbol | melting
point /°C | boiling
point /°C | density in g/cm ³ | electrical
conductivity | |-----------|--------|----------------------|----------------------|------------------------------|----------------------------| | boron | В | 2300 | 3659 | 2.3 | poor | | aluminium | Al | 661 | 2467 | 2.7 | good | | gallium | Ga | 30 | 2400 | 5.9 | fair | | indium | In | 156 | 2080 | 7.3 | good | | thallium | Τl | 304 | 1457 | 11.9 | fair | | (a) | (i) | State the number of outer shell electrons in atoms of elements in this group. | | |-----|------|---|-----| | | | | [1] | | | (ii) | State the relationship between group number and outer shell electrons. | | | | | | | | | | | [1] | | (b) | Des | scribe two trends in properties of Group III elements shown in Table 5.1. | | | | 1 | | | | | | | | | | 2 | | | | | | | [2] | | (c) | One | e of the elements in Group III is a non-metal and the others are metals. | | |-----|-------|---|-----| | | (i) | Describe the bonding in metals. | | | | | | | | | | | | | | | | [2] | | | (ii) | Use ideas about metallic bonding to explain the electrical conductivity of aluminium. | | | | | | | | | | | | | | | | [2] | | | (iii) | State which Group III element is a non-metal. | | | | | Explain how Table 5.1 shows this. | | | | | element | | | | | explanation | | | | | | [1] | 6 The graph in Fig. 6.1 shows the variation of current with potential difference across a lamp **X**. Fig. 6.1 | (a) | Use the graph increased. | to explain | how the | resistance | changes | as the | current | through | the | lamp | is | |-----|--------------------------|------------|---------|------------|---------|--------|---------|---------|-----|------|----| [| 2 | (b) The circuit in Fig. 6.2 contains lamp X and a second lamp Y. Lamp Y is rated 3.0V, 12.0W. Fig. 6.2 | 1 | /:\ | llaa tha | aranh ta | determine | +60 | alirra nt | through | lama | ·V | |---|-----|----------|----------|-----------|-----|-----------|-------------|------|----| | ı | 1) | use me | Orabn 10 | determine | me | current | THE COLICIE | iamo | | | ١ | , | 0000 | 9.40 | | | 00 | | ٠٠٣ | | | current = | | Α | [| 1 | | |-----------|--|---|---|---|--| |-----------|--|---|---|---|--| (ii) Calculate the current through lamp Y. (iii) Calculate the current through the ammeter. (iv) Calculate the combined resistance of the lamps in this circuit. (v) Calculate the charge passing through the ammeter in 5 minutes. 7 (a) A sulfur atom has 16 protons and 16 electrons. A sulfur ion has a 2- charge. (i) Complete Fig. 7.1 to show the electron arrangement in a sulfur ion, S^{2-} . Fig. 7.1 (ii) Sulfur forms an ionic compound sodium sulfide. Predict the formula of sodium sulfide. [1] **(b)** Methanethiol, CH₃SH, is a colourless gas with a smell of rotting vegetation. It has similar bonding to that in methanol, CH₃OH. Draw a dot and cross diagram to show the outer shell electrons in the atoms of a molecule of methanethiol. [3] [2] | The | isoto | ope $\frac{231}{91}$ Pa is unstable and decays by emitting an alpha-particle. | | |-----|-------|---|--------| | (a) | Stat | te the number of protons and neutrons in the nucleus of this isotope. | | | | prot | tons | | | | neu | trons | [1] | | (b) | (i) | Complete this equation to describe the decay of $\frac{231}{91}$ Pa. | | | | | $^{231}Pa \rightarrow \cdots X + \cdots \alpha$ | [2] | | | (ii) | Identify the element X. | [1] | | (c) | The | half-life of the isotope $\frac{231}{91}$ Pa is 3.4×10^3 years. | | | | (i) | Explain what is meant by the term half-life. | | | | | | | | | | | | | | | | [1] | | | | | | | | (ii) | Calculate the time it would take for the activity of a sample of $^{231}_{91}$ Pa to fall to $1/8^{th}$ original value. | of its | | | (ii) | Calculate the time it would take for the activity of a sample of $^{231}_{91}$ Pa to fall to $^{1/8}$ th original value. Show your working in the box. | of its | | | (ii) | original value. | of its | | | (ii) | original value. | of its | | | (ii) | original value. | of its | | | (ii) | original value. | of its | | | (ii) | original value. | of its | | | (ii) | original value. | of its | | | (ii) | original value. | of its | | | (ii) | original value. | of its | | | (ii) | original value. | of its | 8 9 Three of the ores from which copper is extracted are cuprite, malachite and tenorite. Each ore contains a different copper mineral. Each mineral is reacted with carbon at high temperature to extract copper metal. (a) Complete Table 9.1. [Relative atomic masses: A_r: C, 12; Cu, 64; O, 16.] Table 9.1 | mineral in ore | formula | relative formula
mass (RFM) | mass of
copper in RFM | maximum mass of copper extracted from each tonne / tonne | |----------------|-------------------|--------------------------------|--------------------------|--| | cuprite | Cu ₂ O | 144 | 128 | | | malachite | CuCO ₃ | 124 | | 0.52 | | tenorite | CuO | | 64 | 0.80 | [3] (b) The equation for the extraction of copper from copper carbonate (malachite) is shown below. $$2CuCO_3 + C \rightarrow 2Cu + 3CO_2$$ Calculate the mass of copper that can be extracted from 5 tonnes of copper carbonate. Show your working in the box. mass of copper = tonnes [3] | (c) | Deduce the balanced equation for the extraction of copper from cuprite. | | |-----|---|-----| | | | [2] | | (d) | Name a use of copper metal and explain this use by referring to a property of copper. | | | | use | | | | property | [2] | 10 Fig. 10.1a shows a toy train of mass 0.18 kg. It is powered by clockwork. A spring is coiled tightly and then allowed to uncoil. Fig. 10.1a Fig. 10.1b | (a) | Nar | ne the type of energy stored by the tightly coiled spring. | | |-----|------|--|-------| | | | | [1] | | (b) | The | spring uncoils and it transfers energy to the wheels of the train. | | | | The | train accelerates to a speed of 0.76 m/s. | | | | (i) | Calculate the kinetic energy gained by the train. | kinetic energy = | J [3] | | | (ii) | The tightly coiled spring stores more energy than the energy calculated in (b)(i) . | | | | | Explain why not all the energy is transferred to kinetic energy of the train. | | | | | | | | | | | | | | | | | **11** A scientist studies the deflection of charged particles in a magnetic field. Fig. 11.1 shows the tracks of two particles created in a single interaction at point **A**. Each particle leaves point **A** with the same velocity. Fig. 11.1 Track 2 is produced by an electron. The particle producing track 1 has the same mass as an electron. | | e charge
ng track 2 | • | rticle that | produces | track 1 | compares | with the | charge | of the | |------|-------------------------------|---|-------------|----------|---------|----------|----------|--------|--------| |
 | | | | | | | | | | |
 | | | | | | | | | | |
 | | | | | | | | | [2] | | | | 0 | 4 He Helium | 20
Ne
Neon | 40
Ar
Argon | 84 Kr
Krypton
36 | 131
Xe
Xenon
54 | 222
Ra
Radon
86 | | 175
Lu
Lutetium
71 | 260 Lr Lawrencium 103 | | | | | | |--|-------|---|--------------------|-------------------------|-------------------------------------|----------------------------------|-------------------------------------|------------------------------------|----------------------------------|---|---|-----------------------------------|------------------------------------|-------------------------|-----------------------------------|------------------------| | | | | | | | | VII | | 19 TI 9 | 35.5 C1 Chlorine | 80
Br
Bromine
35 | 127 = Iodine | 210
At
Astatine
85 | | 173 Yb
Ytterbium
70 | 259
Nobelium
102 | | | | N | | 16
Oxygen
8 | 32
S
Suffur
16 | 79 Selenium 34 | 128 Te Tellurium | 209 Po Polonium 84 | | 169
Tm
Thulium | 258 Md Mendelevium 101 | | | | | | | | | > | | 14 Nitrogen 7 | 31 P Phosphorus 15 | 75
As
Arsenic
33 | Sb
Antimony
51 | 209
Bi
Bismuth
83 | | 167
Er
Erbium
68 | 257 Fm Fermium 100 | | | | | | | | | > | | 12 C Carbon 6 | 28
Si
Silicon | 73 Ge Germanium 32 | 119
Sn
Tin
50 | 207 Pb Lead | | 165
Ho
Holmium
67 | 252
Es
Einsteinium
99 | | | | | | | | | = | | 11
Boron
5 | 27
A 1
Aluminium
13 | 70
Ga
Gallium
31 | 115 In Indium | 204 T 1 Thallium | | Dy
Dysprosium
66 | | | | | | | | S | | | | | | 65
Zn
Zinc
30 | 112
Cd
Cadmium
48 | 201
Hg
Mercury | | 159
Tb
Terbium
65 | 247 BK Berkelium 97 | | | | | | | DATA SHEET
The Periodic Table of the Elements | | | | | | 64
Cu
Copper
29 | 108 Ag Silver 47 | 197
Au
Gold | | Gd
Gadolinium
64 | 247 Cm Curium | | | | | | | DATA SHEET ic Table of the | Group | | | | | S9
Nickel
Nickel | 106
Pd
Palladium
46 | 195
Pt
Platinum
78 | | 152
Eu
Europium
63 | 243 Am Ameridum | | | | | | | DATA (| Gre | | | | | 59 Co Cobalt 27 | Rhodium 45 | 192 Lr
Iridium | | Sm
Samarium
62 | 244 Pu Plutonium 94 | | | | | | | he Perio | | | 1
Hydrogen | | | 56
Fe
Iron
26 | 101
Ru
Ruthenium
44 | 190
OS
Osmium
76 | | Pm
Promethium
61 | Neptunium | | | | | | | - | | | | | | Manganese | Tc
Technetium
43 | 186
Re
Rhenium | | Neodymium 60 | 238
U
Uranium
92 | | | | | | | | | | | | | | | 52
Cr
Chromium
24 | 96 Mo Moybdenum 42 | 184 W Tungsten 74 | | Pr
Praseodymium
59 | Pa
Protactinium
91 | | | | | | | | | | | | | | | 51
V
Vanadium
23 | Nobium 41 | 181 Ta Tantalum | | 140 Ce Cerium 58 | 232
Th
Thorium
90 | | | | | | | | | | | | | 48 Ti
Titanium
22 | Zr
Zirconium
40 | 178
Hf
Hafnium
72 | | | nic mass
Ibol
ton) number | | | | | | | | | 45
Scandium
21 | 89 × | 139 La Lanthanum 57 * | 227
AC Actinium 89 | id series
I series | a = relative atomic massX = atomic symbolb = atomic (proton) number | | | | | | | | | = | | Be Beryllium | 24 Mg Magnesium | 40 Ca Calcium | Strontium | 137 Ba Barium 56 | 226
Ra
Radium
88 | * 58–71 Lanthanoid series
† 90–103 Actinoid series | « × ¤ | | | | | | | | | - | | 7 Lithium | 23
Na
Sodium | 39 K Potassium 19 | Rb Rubidium | CS
Caesium
55 | 223 Fr Francium 87 | * 58–71
† 90–10 | Key | | | | | | The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.). Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.